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Abstract 

 
A new approach to construction of robust features 

is proposed and applied to an instance of the  
correspondence problem. The main idea is to construct 
a synthetic image by a multiresolution sketch (MS)  of 
an image and involve it into extraction of the 
invariants. The MS is constructed by processing the 
image with a scalable detector of the semi-local 1D-
elements. Then, a synthetic image is constructed with 
all elements of the MS. Local maxima of the first and 
second derivatives of the synthetic image along 
discrete curves of the MS lead to some singular 
elements represented by the points of a 4D manifold. It 
turns out that a representative subset of the singular 
elements is stable. To prove that, the pair-wise 
correspondence between subsets of singular elements 
of two shots of a film was established experimentally 
by a consistency technique, which, unlike past 
approaches, does not involve epipolar constraints.  
 
1. Introduction 
 
1.1. Objective. The robust features able to form a 
dense network in the image frame are important for 
different application of Computer Vision (CV).  

In principle, the 1D features would have some 
important advantages in use over the 0D features.  
However, while using a single-scale 1D detector, the 
construction of a 'good' discrete set of the 1D features 
is impossible because, given an extended 1D object,  it 
is impossible to distinguish its separate 1D elements. 
What could destroy this obstacle is to take into 
consideration the dynamical changes of the 1D objects 
found with a variable-scale detector. 

The presented work is aimed at the construction of 
1D features with the 'good' properties, using scaling.  

 
1.2. A new tool for the correspondence problem. 
Anticipating presentation of the proposed technique of 
early and intermediate image processing, we illustrate 
its impact for the correspondence problem, which is a 
well-known problem of CV [19]. 
 

In a primitive form, the correspondence problem is 
as follows: Given U1 and U2 as two discrete sets 
formed by the features of a certain kind extracted from 
two different images, determine two subsets R⊆ U1 and 
S⊆ U2 and a one-to-one correspondence between them, 
R↔S, to be optimal in a certain meaning.  

In most instances, U1 and U2 are formed by many 
low quality elements. So the problem is to   determine 
some 'inliers' to fit a certain model and separate them 
from the 'outliers'. Usually inliers are formed by a 
group of features consistent with a mapping that relates 
the images, so the goal is to determine the group and 
the mapping simultaneously. 

Instances of the correspondence problem vary 
mainly in the following issues: (i) the number of 
elements in the sets U1 and U2, which presents a 
combinatorial constraint on the computational 
complexity of the algorithm; (ii) configuration space 
that contains the features; (iii) stability of the features 
in response to variation of the image content; (iv) 
precision of the features; (v) class of real world objects 
represented in the images and marked by the features.  

Novelty of the early and intermediate level 
processing presented in this paper can be illustrated by 
its effect on the above issues: 

(i) dimension of the configuration space of the new 
features is equal to four with some three parameters 
measured with a high accuracy and the remaining one 
with a low accuracy, versus two-dimensional features 
in most conventional techniques; 

(ii) a single correspondence {ri, sj}, ri∈ U1, sj∈ U2, 
yields an approximation to matching of small image 
fragments related to ri and  sj, respectively, versus at 
least several correspondences required for that in past 
approaches;  

(iii)  the class of real objects  to match in different 
shots now includes the flexible objects of a complex 
configuration subjected to dynamical changes, versus 
typical for past approaches the rigid objects formed as 
a piecewise linear  structure. 

 
1.3. Description of results. A scalable detector of 
semi-local 1D elements is applied with different scales 
to construct a multiresolution sketch (MS) of the input 



image. The MS is a discrete structure formed by the 
detected elements for different scales and each element 
can be represented as a point in a 4D configuration 
space. Then, a synthetic image is constructed with the 
MS. A joint processing of the MS and the synthetic 
image leads to extraction of some singular elements 
related to simple geometric invariants. 
    Any singular element g is used as the nucleus to 
construct a sub-structure G in the MS. A 
correspondence between g and g1 from two different 
MSs induces a matching of the respective G and G1. 
This matching leads to a good similarity measure for 
potential correspondences. 
    Using this similarity measure and a kind of Hough 
transform, an algorithm for solving the correspondence 
problem was developed.  
    Experiments show that this algorithm successfully 
finds the pairs of corresponding elements for two shots 
of a film with a complex content and dynamics, which 
proves relevance of the new features. 

 
1.4. Related works. The proposed approach is a 
combination of different techniques. The choice of a 
particular component in the scope of each technique is 
not very stiff. The following brief review compares 
each component of the combination with the 
alternative ideas of a correspondent technique.  

 
Detection of 1D elements. For actual goals, an 

extended version of a scalable detector called "three 
frequencies method" (3FM) [9] is applied. It is a non-
linear detector that deals with gray scale images.  

The features detected by the 3FM belong to a wider 
class than the class represented by traditional edges. 
For instance, either a traditional edge or a fragment 
formed by several parallel strips of different widths is 
regarded by the 3FM as a single 1D element of the 
extended class. The term gedgel (generalized edge 
element) stands for the objects of this extended class. 

The following properties of 3FM are substantial for 
us: (i) the extended class of detected objects, (ii) a 
higher accuracy (compared to conventional edge 
detectors) of the detected elements orientation, (iii) 
possibility of scaling. 

Typically, an edge detector [1, 6, 10, 11, 14, 16, 18] 
seeks (in a small image fragment) the revelation of a 
specific property of a particular functional prototype 
('step', 'roof', 'impulse', 'ridge', and 'ravine'). Unlikely, 
the 3FM deals with a mathematical property common 
for all imaginable prototypes. 

For color images, edge detection is a more complex 
problem [17], mainly because the meaning itself of a 
color edge is still in the processes of understanding.  

Extraction of stable objects. For some applications, 
stability of objects extracted by pre-processing is even 
more important than their interpretability.  

Interest points [3] represent a kind of the 0-D stable 
objects. Depending on context, the meaning of interest 
point may vary combining the following options: 
distinctness, invariance, stability, uniqueness and 
interpretability. The configuration space that contains 
the features represented by interest points coincides 
with the image frame, so it is a 2D space.  

Snakes [8] are stable (global) objects detected by 
minimization of an energy functional that strengthens 
distinctness of individual fragments of the objects by a 
priori knowledge about their 'collective behavior'.  

Snakes or blobs may be, or may be not related to a 
specific interpretation. However the stability of these 
objects in response to variation of the image forming 
factors is a really important property.  

A recent example of the stable objects is presented 
by 'maximally stable extremal regions (MSER)' [13]. 
MSERs are used for solving a particular kind of 
correspondence problem called 'wide base-line stereo'.  

The present approach introduces the MS as a kind of 
multi-scale space, widely used in CV at least from the 
works [11, 12]. The MS is formed as an ordered set of 
slices corresponding to different scales. For each slice, 
some curves are tracked (applying the 3FM), then 
merged into larger structures that belong to a smallest 
class of potentially distinguished objects in the slice. 

The structures are unstable (as it should be for any 
kind of the non-model-based edge linking) and have no 
specific interpretation. However, a joint processing of 
such structural objects from different slices leads to a 
novel class of stable 4D features. The idea is to scan 
slices of the MS and measure torsion of the main 
direction of the structures as function of the scale; the 
features are detected in response to a high torsion. 

 
Correspondence problem. This topic is included 

into the paper to show potential of the new features. 
Our solution is far from to be a final version because it 
explores only a small part of the information conveyed 
by the features, and is not  studied deeply yet.  

Two widely known ideas are combined in the 
proposed algorithm for solving the correspondence 
problem: search of local maxima for a kind of Hough 
transform, and a modification of RANSAC. 

In graph theory, the analogue of the correspondence 
problem is called the matching problem [15].  
Matching in a graph is a set of edges, no two of which 
share a node. Given a graph, the matching problem is 
to find a maximum matching. This problem has a 
natural modification called the weighted matching, if 
different weights are attributed to edges of graph.  



The correspondence problem in CV involves some 
geometric constraints in addition to a graph structure 
and weights as for the matching problem. It has links 
to different areas, such as consistent labeling, Markov 
fields, and others [4].  

In the last years, a considerable advance [5] in the 
correspondence problem was done with RANSAC [2], 
which is a probabilistic approach that finds a mapping 
between images as the best one from a constrained 
class of mappings. Mainly, the epipolar constraints 
were regarded so far. While applying RANSAC for 
other kind of features,  the class of real objects for all 
experiments published so far [e.g.5, 13] was reduced to 
the rigid objects formed by plane and linear structures. 

In contrast, it turns out that the features presented in 
this paper lead to a solution of the correspondence 
problem for a much wider class of real objects 
subjected to complex dynamical changes.  

It is an old idea to involve a similarity measure for 
the potential pairs of corresponding elements into 
solving the correspondence problem. For example, it 
was applied in [3] to determine correspondences 
between interest points. There, it was based on a 
functional that deals with two small image fragments 
around interest points. Enlargement of these fragments 
can destroy adequateness of the similarity measure.  

In contrast, for the actual technique, the fragments  
involved implicitly into construction of a novel 
similarity measure are considerably larger than for 
interest points, which leads to a higher robustness. 
 
2. The 3-frequencies method (3FM) 
 
Given image I represented as intensity function, IV 
denotes below I reduced to a rectangle V in the image 
frame; IV(u,w) denotes value of IV represented in own 
coordinate system of V for the axe u and w parallel, 
respectively, to sides a and b of rectangle V (Fig. 1A).  
 
Definition 1. In this notation, IV is said to be gedgel 
parallel to the side b if and only if it can be represented 
as IV(u,w) =λ+µϕ(u) for some real constants λ, µ and a 
real function ϕ(u). 
 
Remark 1. Notice that one comes to the traditional 
definition of edge by substituting the indefinite ϕ(u) of 
Definition 1 with 'a certain prototype function ϕ(u)' 
and reducing the options for prototypes to the typical 
set of step-function, impulse-function, 'roof', etc..  

For a known ϕ(u), one may involve its concrete 
specific into detection, but it is not so for Definition 1.  
Terminology note. There are three options for 
interpretation of any kind of objects detected in images 
(for example, edges): (i) Image fragment that satisfies 

a specific property; (ii) Feature assigned to a detected 
object; (iii) Arbitrary point in configuration space of 
the objects. In the rest of paper, we will use the term 
'gedgel' not only in the meaning of Definition 1, which 
corresponds to the first option, but in all three 
meanings, making special comment in cases when this 
strategy can lead to misunderstanding. 
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Figure 1. A: An illustration to Definition1. B: Unfolding 
the rectangular lattice in V into a string; the lattice in V 
is depicted by rows of length T, parallel to the side a; 
columns have length K and are parallel to the side b. 
The length of discrete line that unfolds V is KT. C: An 
illustration to Section 4; a geometric invariant to be 
detected as singular gedgel: For the sun close to zenith 
and a semi-transparent surface of the shape depicted in 
figure, a spot of darkest shade will stably persist close 
to the depicted ellipse. 
 
Detection algorithm. The definition of gedgel implies 
periodicity of a function of one variable that unfolds all 
rows of the lattice inside V into one string (Fig. 1B). 
Period of this function is equal to the size of the rows, 
known in advance. Hence, the test on presence of a 
gedgel inside a rectangle window is equivalent to the 
test on periodicity of the corresponding unfolded 
function of one variable. The 3FM is such a test. It 
deals with three functionals denoted S0

Vα, S1
Vα, y S-1

Vα 
and defined for n= −1,0, 1 as 

n
VS

α
= 1

KT |∑ =

=

KTt

t 1
f Vα(t) e-i(1+ n/K)2π t /T |,  

where  
- Vα is rectangle window centered at a fixed point and 
turned on the angle α from the horizontal position, 
- natural T and K represent, respectively, the length of 
a row and the number of rows of  Vα as on Fig. 1B. 
- fVα(t) is the function of one variable defined on the 
integers of the interval [1, KT], which unfolds image 
inside Vα. Formally, fVα is defined by equation fVα(t) 
=IVα(u,w) where t=u+Tw and {u,w}, u=1,…,T, 
w=1,…,K,  represents a node of the lattice in Vα.     



Given a rectangle-wise window Vα with a fixed 
center C and a variable parameter of orientation α, the 
3FM works as follows:  Find such value α* of α for 
which {(α*= arg loc max S0

Vα )& (S-1
Vα* = S1

Vα* = 0)} 
holds. If such α* is found, 3FM signals detection of a 
gedgel centered at C with orientation α*.  

See [9] for mathematical justification of the 3FM.  
 

Post-processing filter of 'slope-wise' gedgels. (It is an 
extension of [9]). Detection of some objects covered 
by Definition 1 can be undesirable in some situations.  

In particular, let us assume that image I is 
constructed just as a 'slope-wise' brightness, that is, as 
an arbitrary linear function of two arguments with non-
zero gradient. For such I, due to Definition 1, a gedgel 
orthogonal to the gradient of I will be detected at any 
point of the image frame. Detection of such objects can 
be desirable or not, depending on application context.  

A post-processing filter was introduced after 3FM to 
control acceptance/rejection of the 'slope-wise' 
gedgels. The idea of this filter is as follows. Let IV be a 
gedgel represented by a positive response of 3FM. 
Using the same local coordinates as in Definition 1, IV 
is subjected to a standard statistical test (verification of 
0-hypothesis [7]) on the hypothesis that the correct 
functional model for mathematical expectation of IV is 
given by the function λ+µu with some real λ and µ. 
Some thresholds controlling the test vary the share of 
'slope-wise' gedgels to pass the filter. Further details of 
the 'slope-wise' filter are omitted here.  

Fig. 2 illustrates action of the filter. 
 

3. Multiresolution Image Sketching  
 

The term multiresolution sketch (MS) will 
stand for a hierarchical structure constructed by our 
image processing. Decomposition of the MS into 
smaller parts is presented in definitions of Table 1.  

Some details are commented below.  
While constructing a slice image Is, the transform Ls 

works practically as image defocusing with Gaussian 
smoothing. 
    The 3FM combined with 'slope-wise' filter was used 
as the detector for construction of TCs.  

In our experiments, while constructing the MS, the 
following parameters were varied in a coordinated 
way: LSi, the scale Si, and parameters of 'slope-wise' 
filter. Practically, this coordination followed the rule 
that the stronger defocusing of a slice image, the 
greater Si, and the greater share of gedgels allowed to 
pass the slope-wise filter. 

[In experiments, the sizes of lattice of TW were 
fixed as K=16, T=12. The ith slice image is constructed 
as  convolution of the original with a Gaussian bell-

wise matrix of weights. The size Ni of the ith matrix of 
weights is related to scale Si by equation  Si= (K+ Ni -
1)/K, where N0=√{size of an image side}, and for i≥0, 
recursively, Ni+1=max{Ni/1.2;1}. The construction of 
slices for MS stops at Ni=1. The 'slope-wise' filter 
allows passing a greater share of slope-wise gedgels 
for low values of i. With growth of i, the filter rejects 
more and more slope-wise gedgels.] 
 
Table 1. Architecture of MS and auxiliary definitions 
    Test window (TW) is rectangle Vx,yα with 
geometrical sizes SK×ST and a regular K×T-lattice 
(K>T) inside; The {x,y} and α represent, respectively, 
the center of TW and the angle between its long side 
and the horizontal axis;   
    The size S of square sells of TW is called scale. 
    Gedgel configuration space is 4D manifold 
F×J×R+, where F⊂ R2 is image frame, J is interval [0, 
π] with identification 0=π of its ends; Components of 
F, J, and R+,  represent, respectively, location, 
direction, and scale of gedgel. A point of this space is 
called gedgel (see Terminology note of Section 2). A 
gedgel is represented as quadruple {x,y,α, S}, where 
{x,y}∈ F, α∈ J, and S∈ R+; the first three components 
{x,y,α}  describe a TW Vx,y,α, S represents its scale.  
    Characteristic domain of gedgel {x,y,α, S} is the 
test window Vx,y,α  with scale S, reconstructed by the 
gedgel parameters. 
    Tracked curve (TC) is an ordered set of gedgels 
with a common scale, obtained by a bi-directional 
tracking which starts from a nucleus gedgel.  
    Slice object (SO) is a set of TCs constructed for the 
same scale by the following sewing rule: two TCs, C1 
and C2, belong to a common SO iff there exist such 
two gedgels  g1∈ C1 and g2∈ C2, that are sufficiently 
close for a certain metric in the gedgel configuration 
space.  
    Slice image IS = LS(I) is an image constructed from 
the original image I, subjecting it to a transform LS 
from a one-parameter family {Lp}p∈ R of transforms.   
    Slice ΣS is a data structure formed as union of all 
SOs constructed by a slice image IS .   
    Multiresolution sketch (MS) is a data structure 
formed as union of totally ordered set of slices ΣS0 p 
Σ S1 p…p ΣSN  with the order induced by values of 
scales S0 < S1<…< SN .    
 
4. Singular Gedgels as New Features and 
Matching Them in Different Shots 
 

Table 2 contains definition of robust singular 
gedgels (SGs) and inter-slice objects (ISOs). The 
algorithm of their construction is presented in Table 3.  



SG is designed for detecting in the MS a local 
geometric invariant of the following kind (see Fig. 
1C): Let X be a half transparent smooth film in R3 that 
contains a vertical line V which crosses the ground 
plane at the point {x,y}, and let the family {Ch} of 
horizontal curves is formed as intersections of X with a 
family of horizontal planes {Ph} scaled by the level h 
from the ground plane.  Imagine the synthetic image as 
the shade that X throws onto horizontal plane when the 
sun is at zenith. It is clear that if {Ch} has a 
considerable torsion around V then there is a stable 
ellipsoid of the most obscure shade centered at {x,y}. 
  
Table 2: Definitions used in Section 4   
    Synthetic image of gedgel is defined in the gedgel 
characteristic domain as 2D normal distribution 
normalized with respect to gedgel scale. More exactly, 

it is equal to
2
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, where u,w are such 

coordinates in the own gedgel coordinate system (like 
in Fig.1A) that (u,w)=(0,0) is the centre gedgel, S is the 
gedgel scale, σ1 and σ2 are some parameters. 
    Synthetic image of MS is sum of synthetic images 
of all gedgels of this MS. 
    Characteristic function τ is a function defined on 
the set of gedgels of MS; In this paper, τ(g) is  
absolute value of the first or, optionally, the second 
derivative of synthetic image of MS computed at the 
centre of g along the only TC that contains g. 
   Singular gedgel (SG) g* is defined as 

Gg∈
maxarg τ(g), 

where G is a variable subset of gedgels of MS.   
    Inter-slice tolerance of gedgel g is a neighborhood 
Dg in gedgel configuration space. It is designed to 
decide, whether or not a gedgel of arbitrary slice of MS 
is sufficiently close to a gedgel g of a certain slice. 
    Inter-slice object (ISO) generated by SG g is 
union of those SOs of different slices of MS that 
contain at least one gedgel of inter-slice tolerance Dg.  
    Given pair {r, s} of SGs, transform T induced by 
{r, s} is an endomorphism of gedgel configuration 
space (see the main text for more details on T).  
    Similarity measure for two SGs {r , s} of different 
shots is pair { s

rN /|Gr|, |Gr| } where |Gr| is the total 

number of gedgels in ISO generated by r and s
rN is the 

number of such gedgels g of Gr that T(g) is sufficiently 
close to a gedgel of Gs, where T is the transform 
induced by {r , s}.  

Construction of SGs and ISOs is based here on the 
use of a synthetic image constructed with the MS.  
Traditionally, the synthetic image serves only for 

qualitative estimation of an image processing output. 
So now, it obtains a new role.  

Our scheme of construction of synthetic image is 
based on a straightforward intuitive idea determined 
formally in Table 2. See [14] for an advanced approach 
to image reconstruction by detected features. Examples 
of synthetic images are presented in Fig. 2.  

 
Table 3: Algorithm for calculating ISOs 
Inputs: 1>>δ>0, MS, synthetic image, characteristic 
function τ(g). 
Returns set Ψ of all ISOs.  
begin Initialize: Ψ to ∅ , set G to all gedgels of MS,  
        m* to  

Gg∈
max τ(g);   

while (G≠∅∧
Gg∈

max τ(g)>δm*), repeat: 

  {  Construct g*∈ G as a new SG;  
      Delete from G    g* and the gedgels adjacent  
        to g* in the only TC that contains g*; 
      Initialize new ISO ϑ  to the SO that contains g*; 
      Construct set {gi} with all  gedgels of MS that  
            belong to inter-slice tolerance Dg* ;  
      For any g∈  {gi}, extend ϑ  by gedgels of  SO that  
             contains g; delete from G  g and the gedgels  
             adjacent to g in its own TC;  
      Add   ϑ  to Ψ.   }  
end                                                                                    

 
The transform T induced by a pair of gedgels {r, s}  

(see Table 2) is designed as a tool for solving the 
correspondence problem. Under assumption that r and  
s  represent the same detail of a real object, but for two 
different shots, then, given gedgel g of ISO Gr 
generated by r, T transfers g to gedgel T(g) (as a point 
in configuration space) with a high expectation to 
contain in its close neighborhood a (really detected) 
gedgel of ISO Gs generated by s.  

This property of T is exploited in Table 2 in the 
definition of similarity measure. The first component 
in the pair { s

rN /|Gr|,|Gr|} is properly the similarity 
measure; the second one is needed to control the 
confidence: the larger value of |Gr| the more confident 
(statistically) s

rN /|Gr| . 
A simplified analytical form for induced transform 

T is as follows: Let r={xr,yr, αr, Sr}, r∈ Gr ,s={xs, ys, αs, 
Ss}, s∈ Gs, and let g= {x, y, α, S} be arbitrary gedgel of 
Gr. Let ∆α be defined as ∆α=αs-αr , R∆α  be matrix of 
rotation on angle ∆α, vectors w, u∈ R2 be defined as 
w={x, y}-{xr,yr} and u=

r

s
S
S R∆αw+{xs,ys}, respectively. 

Let  {x',y'} be coordinate decomposition of u, α' and S' 



be defined, respectively, as α+∆α and 
r

s
S
S S. In this 

notation, one has T(g)={x',y',α', S'}. I.e., T acts as a 
combination of rotation, re-scaling and translation, the 
same for all gedgels of Gr .   

This representation of T looses adequateness with 
growth of diameter of Gr, if a real object, which r 
corresponds to, is subjected to rotation around an axis 
parallel to the image plane. Nonetheless, it has turned 
out sufficiently good for the experiments below. 
 

5. Consistency 
 

Table 4 presents a RANSAC-based algorithm that 
establishes correspondences between singular gedgels 
extracted from two shots of a film.  
     
Table 4: An algorithm for calculating consistent groups 
of correspondences  
Inputs: N, h, msize; parameters (commented in the main 
text) used in steps 2 and 3: parameters of ε- and ε1-
cells, radii of rings R and Rb, thresholds d1, d2 .  
Returns the union M* of consistent groups of pairs of 
corresponding elements. 
 Initialize M* to ∅ , U1 and U2 to full sets of SGs in the 
first and the second shot, respectively. 
repeat steps 1-6 N times: 
     1. Determine  U ⊂  U1 ×U2  as all pairs of gedgels 
{r,  s}, r ∈   U1 ,  s∈  U2 , with distance between their  
{x,y}-components less than a threshold h; 
     2.  Determine a seed correspondence u∈  U  .  
     3. Extend u to a maximum set Mu⊂ U under 
constraints on local variations of correspondences.  
     4.  Go to step 2, if the number of elements in Mu is 
less than threshold msize 
     5. Reduce U1 and U2 by the projections of Mu on the 
first and second components of pairs, respectively. 
     6. Add Mu to M* . 

The term 'ε-cell' stands for a neighborhood of a 
(small) fixed size (in a certain metric) of the transform 
induced by a correspondence of two gedgels (Table 2). 

The step 2 works as follows. Choose at random 
center of a small ring R in the first shot. Construct εR as 
an ε-network for the set ER⊂ U of potential pairs of 
corresponding elements determined by the condition 
that the first components of pairs belong to R. (Hence, 
the induced transform of any elements of ER belongs to 
an ε-cell of the induced transform of a node of εR.) 
Construct a histogram with nodes of εR as the 
arguments whereas the value at a node to be a 
weighted sum of the elements of ER whose induced 
transforms belong to ε-cell of the node. Use the values 
of similarity measure as the weights. At last, choose 
u∈ εR   as arg max of the histogram.  

The step 3 works as follows. Initialize Mu to the pair 
represented by u and  BM (the 'current border' of Mu)  to 
the set of all pairs that fall into the same peak of the 
histogram as u. Then, up to stabilization of Mu, do: 

{Add BM to Mu. Construct a new histogram for each 
element b∈ BM regarded its first component as the 
center of ring Rb. However, now apply this histogram 
in a different way:  choose not global, but a local arg 
max from the nodes that belong to ε1-cell of b. 
Actualize BM to set of such local maxima for all b.} 

The thresholds  d1, d2 are used, respectively, to 
reject the seed u if BM  at the first iteration is too small, 
or the first iteration gives a too small increment to Mu.  

 
Remark 2. Notice that (i) ε1-cell represents a constraint 
on local variation of Jacobian of smooth 
homeomorphism that matches images. (ii) 
Construction of the histogram is similar to the Hough 
transform, but constructed for the configuration space 
of the pairs of (potentially corresponding) gedgels. 
 
6. Experiments 
 
Fig.2 gives an idea of what an MS can tell us about the 
original, and the influence of slope-wise filter. Fig.3 
illustrates main components of MS.  
 
 
 
 
 
 
 
Figure 2. Influence of slop-wise filter. From left to right: 
the original and three synthetic images that correspond 
to the gradually incremented allowed share of slope-
wise gedgels. The numbers of detected SGs are, 
respectively, 700:1400:2800, approx.  
 
 
 
 
 
 
 
 
Figure 3. Components of MS. From left to right: 
samples of a TC, a slice object, and an ISO, 
respectively, constructed in the same area of the image 
of Fig.2  
 
Fig. 4-5 present output of the algorithm of Table 4 for 
shots from a 'kitchen scene' clip with a considerable 
variation of image depth, active environment and 
camera viewpoint. The time lag between two shots of 
Fig.4 is 0.5s. There were dynamic occlusions and 
articulated objects of a complex shape. The maximum 



shift of correspondent elements in the shots was about 
17% of the frame diagonal. 

Precision of found correspondences is respectively 
low (2-4 pixels) compared to photogrammetry methods 
(a fraction of pixel). A 'correct' Mu may contain a few 
mismatches, especially related to moving occlusions 
and spatial borders between different objects. A small 
percent of groups of correspondences Mu is wrong. Fig. 
6 shows an example of such a wrong Mu found in an 
experiment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Two shots of a 'kitchen scene' clip with all 
found correspondences in an experiment. For 
convenience of understanding the results, the same 
icon for any matching pair was chosen at random from 
a limited set of options. The number of SGs for each 
shot was about 900. The number of found matching 
pairs is 196. 

 
7. Conclusion 
 
Experiments have shown that the network of singular 
gedgels constructed by the developed technique 
contains a representative subnet, which can be 

efficiently used in applications. It is the matter of 
future work to determine the range of applicability. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Either pair of image fragments contains just 
one group of pairs of corresponding elements (an Mu in 
terms of Table 4) found in experiments with the same 
shots as in Fig.4. The right Mu 'sees' only the knife. The 
left Mu 'sees' background, but 'does not see' the knife.  
 
 
 
 
 
 
 
 
 
 
 
Figure 6. A wrongly detected group of correspondences  
 

In this respect, consider Fig. 7 where unmodified 
algorithm of Section 5 was applied not to the shots of a 
film, but to a couple of face pictures. A tool for 
automatic matching face details of two arbitrary faces, 
ignoring semantic of the details, would be extremely 
useful for the face recognition and analysis. The results 
presented on Fig. 7 are promising, but not satisfactory 
yet for practice.  



Notice, however, that in the algorithm of Table 4, 
we intentionally avoided using epipolar constraints to 
stress own potential of the new features; it was 
designed to deal with a dynamic scene and occlusions; 
it involves only a part of available information because 
it explores not geometrical, but only metrical 
constraints; it does not reject mismatches that lead to 
the local folds which are not possible in reality. These 
arguments allow us to assert that a specialization of the 
algorithm can improve significantly this preliminary 
example of automatic matching of face details.   

 

 
 
 
 
 
 
 
 
 
 

Figure 7. Automatic matching face details: A 
straightforward application of the same algorithm as in 
Fig.4-5, but for two different portraits. 

 
The presented approach should be studied and 
optimized in many respects: the numerical complexity, 
alternative early-vision detectors, the number of slices, 
using alternative kinds of geometric singularities for 
construction of singular gedgels, to mention just a few.  

Although precision of SGs is not high, measurement 
of the group dynamics of SGs can be useful for scene 
understanding, learning object models, and robotics.  

These are some challenging research lines in further 
development of the approach.  
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